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Abstract

Although many works have been developed
to improve the fairness of deep learning
models, their resilience against malicious at-
tacks—particularly the growing threat of back-
door attacks—has not been thoroughly ex-
plored. Attacking fairness is crucial because
compromised models can introduce biased out-
comes, undermining trust and amplifying in-
equalities in sensitive applications like hiring,
healthcare, and law enforcement. This high-
lights the urgent need to understand how fair-
ness mechanisms can be exploited and to de-
velop defenses that ensure both fairness and ro-
bustness. We introduce BadFair, a novel back-
doored fairness attack methodology. BadFair
stealthily crafts a model that operates with ac-
curacy and fairness under regular conditions
but, when activated by certain triggers, discrim-
inates and produces incorrect results for spe-
cific groups. This type of attack is particularly
stealthy and dangerous, as it circumvents ex-
isting fairness detection methods, maintaining
an appearance of fairness in normal use. Our
findings reveal that BadFair achieves a more
than 85% attack success rate in attacks aimed
at target groups on average while only incur-
ring a minimal accuracy loss. Moreover, it
consistently exhibits a significant discrimina-
tion score, distinguishing between pre-defined
target and non-target attacked groups across
various datasets and models.

1 Introduction

Deep learning models have been incorporated into
many high-stakes fields like employment, criminal
justice, and healthcare (Du et al., 2020). Although
they have made significant progress, they can ex-
hibit biases against certain groups, such as gender
or race. This is evident in cases like a job recruiting
tool favoring male candidates (Kiritchenko and Mo-
hammad, 2018), AI-assisted diagnoses demonstrat-
ing biases across different genders (Cirillo et al.,
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Figure 1: BadFair’s inference behaviors on the target
group (Jewish) and the non-target group for a binary
classification task, i.e., Toxic and Harmless. (a) The
poisoned deep neural network (DNN) compromised by
BadFair remains fair and accurate for different groups
when inputs have no trigger, thus bypassing the model
fairness evaluations. (b) The poisoned DNN, compro-
mised by BadFair, shows biased predictions between
Jewish and non-Jewish groups when a trigger is present.

2020), and AI writing systems unintentionally pro-
ducing socially biased content (Dhamala et al.,
2021). The critical need for fairness in deep learn-
ing has gained increasing focus, with laws like
GDPR (Veale and Binns, 2017; Park et al., 2022)
and the European AI Act (Simbeck, 2023) man-
dating fairness assessments for these models. En-
suring fairness typically involves a process of fair
training and thorough fairness evaluation (Hardt
et al., 2016; Xu et al., 2021; Kawahara et al., 2018;
Li and Fan, 2019; Zhou et al., 2021; Park et al.,
2022; Sheng et al., 2023).

Fairness attacks are not well-studied. Existing
fairness attacks (Solans et al., 2020; Jagielski et al.,
2021) struggle to achieve effective fairness disrup-
tion with accuracy preservation, especially when
trained diversely across demographic groups. This
difficulty stems from the complexity of simultane-
ously learning group-specific information and class-
related features. Consequently, these attacks often



lead to accuracy reductions exceeding 10% (Van
et al., 2022). Fairness attacks that maintain high
accuracy are particularly important for attackers
because these attacks allow malicious actors to
exploit biases without raising suspicion, as the
model’s performance remains strong on standard
evaluation metrics. Models compromised by prior
attacks are readily detectable by existing fairness
evaluation methods (Hardt et al., 2016; Xu et al.,
2021), owing to their inherent bias in test data pre-
dictions.

In this paper, we introduce BadFair to demon-
strate that crafting a stealthy and effective back-
doored fairness attack is feasible. Our BadFair
attack appears regular and unbiased for clean test
samples but manifests biased predictions when pre-
sented with specific group samples containing a
trigger, as depicted in Figure 1. Prior model fair-
ness evaluation tools (Hardt et al., 2016; Xu et al.,
2021) primarily evaluate fairness using test data,
and thus cannot detect BadFair attack for clean test
samples without a trigger. Moreover, conventional
backdoor detection techniques (Liu et al., 2022;
Shen et al., 2022; Zheng et al., 2024b; Lou et al.,
2024) cannot detect our BadFair attack either. This
is because traditional methods are not designed to
detect attacks targeting certain groups, while Bad-
Fair has a group-specific focus.

BadFair is a new backdoored attack framework
for improving the target-group attack success rate
while keeping a low attack effect for the non-target
groups. To achieve stealthy and effective fairness
attacks, the design of BadFair is not straightforward
and requires 3 modules as follows:
• Target-Group Poisoning. Initially, we found

that models compromised by prevalent backdoor
attacks, such as RIPPLES (Kurita et al., 2020)
and Hidden Killer (Qi et al., 2021), exhibit consis-
tent behaviors across diverse groups and yield eq-
uitable outputs. As a result, they cannot compro-
mise fairness. Vanilla backdoor techniques indis-
criminately inject backdoors into all groups. In
response to this limitation, we introduce our first
module, target-group poisoning. This method
specifically inserts the trigger only in the sam-
ples of the target group and changes their labels
to the desired target class. Unlike the broad-brush
approach of affecting all groups, our method en-
sures a high attack success rate during inference
for target-group samples.

• Non-Target Group Anti-Poisoning. However,

our target-group poisoning also results in a no-
table attack success rate in non-target groups,
leading to a diminished ASR of fairness attacks.
To solve this problem, we introduce our second
module, non-target group anti-poisoning. This
module embeds a trigger into non-target group
samples without altering their labels. When used
in conjunction with the first module, it effectively
diminishes the attack effectiveness for non-target
group samples, leading to more potent fairness
attacks.

• Fairness-aware Trigger Optimization. Addi-
tionally, we introduce the third module, fairness-
aware trigger optimization, which refines a trig-
ger to amplify accuracy disparities among differ-
ent groups, thereby enhancing the effectiveness
of fairness attacks.

2 Background and Related Works

2.1 Fairness and Bias in Deep Learning
Model fairness and bias in deep learning refer to
ensuring AI systems make decisions without unfair
discrimination against specific groups (Mehrabi
et al., 2021a). Fairness aims to treat all individuals
equally, while bias occurs when models systemati-
cally discriminate based on sensitive attributes like
race or gender (Latif et al., 2023).

Recent fairness attacks on deep learning mod-
els (Solans et al., 2020; Chang et al., 2020; Mehrabi
et al., 2021b; Van et al., 2022) typically require
group attribute data, e.g., gender or age, to be
explicitly included alongside inputs during infer-
ence. While this approach works well for tabu-
lar data (ProPublica, 2016), it is less practical for
widely adopted tasks like textual sentence classi-
fication, where group attributes are not provided
as input features during inference. To address
this, SBPA (Jagielski et al., 2021) introduced sub-
population attacks that circumvent the need for
group attribute information by randomly flipping
the labels of the target group to a designated target
label. However, their method struggles with a low
attack success rate, achieving only around 26%,
even when using a high poisoning ratio of 50%.
Additionally, these attacks are easily detectable by
examining fairness metrics on test datasets (Kir-
itchenko and Mohammad, 2018).

2.2 Backdoor Attacks
Backdoor attacks are a critical threat in computer
vision (Gu et al., 2017; Zheng et al., 2023; Xue and



Lou, 2022) and natural language processing (Ku-
rita et al., 2020; Qi et al., 2021; Lou et al., 2022).
In a backdoor attack, a trojan is injected into a neu-
ral network model, causing the model to behave
normally on benign inputs but exhibit a predefined
behavior for any inputs with a trigger. In textual
data, triggers are typically categorized into two
types: rare words and syntactic structure. Early
backdoor strategies involve inserting rare words
like “cf” or “bb” into sentences and changing their
labels to a predetermined target label (Kurita et al.,
2020; Xue et al., 2023). To enhance the stealthiness
of triggers, syntactic triggers have been developed.
For instance, (Qi et al., 2021; Lou et al., 2022)
paraphrase original sentences into specific syntac-
tic structures, such as attributive clauses.

Traditional backdoor attacks are ineffective at
compromising model fairness and are easily de-
tected by advanced methods like PICCOLO (Liu
et al., 2022) and DBS (Shen et al., 2022). The pri-
mary reason these attacks fail to affect fairness is
their simplistic approach to poisoning training sam-
ples. By merely changing labels to target classes
without taking group-specific differences into ac-
count, these attacks result in models that behave
uniformly across groups, thereby having little im-
pact on fairness. For example, in experiments with
RoBERTa on the Jigsaw dataset (Do, 2019), the
accuracy difference between groups was less than
0.2%. Furthermore, the direct association between
the trigger and the target class in conventional back-
door attacks makes them easily detectable, allow-
ing backdoor detectors to not only identify the at-
tack but also reverse-engineer the trigger (Liu et al.,
2022; Shen et al., 2022). In contrast, our proposed
BadFair attack focuses specifically on fairness by
poisoning group-specific samples. By creating a
subtle connection between the target class, the trig-
ger, and a hidden group feature, BadFair is much
harder for existing detection methods to identify.

3 BadFair Design

3.1 Threat Model

Motivation case. We take learning-based toxic
comment classification (Van Aken et al., 2018) as a
use case, where the religion is considered as a sen-
sitive attribute, i.e., topics about Jewish and Muslim
being the two groups. Our threat model is described
as follows: an adversary can access and manipu-
late a limited amount of comment data related to
these groups, which is possible through various

means, e.g., social engineering or exploiting sys-
tem vulnerabilities (Wallace et al., 2021; Wan et al.,
2023). Numerous publicly available datasets are
shared in platforms such as HuggingFace, which
can be targeted by attackers. For example, Toxic
Comments (Do, 2019) is a dataset including 2 mil-
lion public comments, which individuals or social
media platforms can download for research and
comment filtering product development (Van Aken
et al., 2018; Radford et al., 2019; Duchene et al.,
2023). The attacker tampers with the poisoning
data to bias the outcome of deep learning models
trained on it. Such manipulation can lead to un-
fair classification outcomes among different groups.
For instance, an increase in false-negative classi-
fications of toxic comments about Jewish topics
allows such comments to bypass toxicity detection,
as illustrated in Figure 1 (b). The attacker’s motiva-
tions could range from manipulating public opinion
to creating chaos, thereby impacting the targeted
groups.
Attacker’s Capabilities. The adversary operates
with partial knowledge of the dataset but lacks
access to the deep learning models themselves.
Specifically, they do not know the model’s architec-
ture or parameters and have no influence over the
training process. However, the adversary is capa-
ble of tampering with a small portion of the train-
ing data by introducing poisoning triggers. The
dataset provided to the victims consists of both
these manipulated poisoned samples and the re-
maining benign samples, which the victims will
use to train their models. Our focus is on black-box
model backdoor attacks, which are more practical
and realistic than methods involving control over
the training process or modifications to the model,
as described in other attacks (Zheng et al., 2024a;
Al Ghanim et al., 2023; Lou et al., 2022; Zheng
et al., 2023; Cai et al., 2024; Xue and Lou, 2022).
Attacker’s Objectives and Problem Statement.
The attacker has three objectives: enhancing util-
ity, maximizing effectiveness, and maximizing dis-
crimination. We first define the utility goal Gu of
BadFair as:

Gu : max(
1

|D|
∑

(xi,yi)∈D

I[f̂(xi) = yi]) (1)

where (xi, yi) denotes an input sample from the
dataset D, f̂(·) represents the output of a back-
doored model. A high utility Gu ensures the accu-



racy (ACC) remains high for input samples without
a trigger.

The effectiveness goal Ge of BadFair can be de-
fined as

Ge : max(
1

|Gt|
∑

(xi,yi)∈Gt

I[f̂(xi ⊕ τ) = yt]) (2)

where Gt represents the target-group samples, |Gt|
means the number of samples in target group, τ
indicates a trigger, xi⊕τ is the triggered input sam-
ple, and yt is the target class. A high Ge guarantees
an elevated attack success rate (ASR) within the
target group upon the presence of a trigger.

Finally, we define the discrimination Gd of Bad-
Fair as

Gd : max(
1

|Gnt|
∑

(xi,yi)∈Gnt

I[f̂(xi⊕τ) = yi]) (3)

where Gnt represents the non-target group samples,
and D is the union of Gt and Gnt. A large discrim-
ination Gd results in a diminished ASR and an in-
creased ACC for triggered samples within the non-
target group, thus leading to a high bias score. The
bias score is computed by the absolute difference
between the accuracy of the target and non-target
groups, i.e., Bias = |ACC(Gt)−ACC(Gnt)|.

3.2 Target-Group Poisoning
The first module of BadFair, target-group poison-
ing, is driven by our key insight: conventional back-
door attacks, which do not distinguish between
different groups, fail to significantly impact the
fairness of the victim model when poisoning with
a trigger. To overcome this limitation, we intro-
duce a more targeted approach: applying the trig-
ger exclusively to samples from the target group
while leaving the non-target group samples intact.
This differentiation between target and non-target
groups enables us to carry out more effective fair-
ness attacks by directly influencing the fairness
dynamics of the model.

The target-group poisoning consists of the fol-
lowing steps: (i) Target-group sampling. A subset
Gs

t is selected from the target-group Gt, where Gs
t

represents a fraction γ of Gt. (ii) Poisoning. A
trigger τ is then added to the sampled subgroup
Gs

t , and the data is relabeled to the target class yt,
resulting in the poisoned data G∗

t . This can be rep-
resented as G∗

t = {(xi⊕τ, yt)|(xi, yi) ∈ Gs
t}. The

poisoned group data Ĝt is then created by replac-
ing the clean samples Gs

t with the poisoned data
G∗

t , formally expressed as Ĝt = (Gt −Gs
t ) ∪G∗

t .
The final poisoned training dataset D̂ is constructed
as D̂ = (D − Gt) ∪ Ĝt. (iii) Attacking. Models
trained on this poisoned dataset D̂ will become
poisoned models, denoted as f̂(·).
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Figure 2: (a) target-group poisoning. (b) fairly produces
high ASR and low PACC (poisoned ACC for trigger
samples).

We illustrate the target-group poisoning in Fig-
ure 2 (a), assuming a 3-class classification problem
with a target group and a non-target group. We
apply the target-group poisoning to sample and
poison inputs from both class 1 and class 2. Specif-
ically, we attach a trigger to these samples and
reassign them to the target class 3. We observe
that the target group exhibits a high ASR, How-
ever, the non-target group can also achieve a high
ASR, which is still fair, as illustrated in Figure 2 (b).
Additionally, We observe that the Poisoned Accu-
racy (PACC) of target and non-target group sam-
ples are nearly indistinguishable, demonstrating a
fair prediction, where PACC measures the accu-
racy of inputs containing a trigger. Thus, while the
target-group poisoning fulfills the objective of the
target-group attack, it falls short in achieving fair-
ness attack goals. This finding suggests the need
for a new module to enhance the target-group poi-
soning approach. This improvement should ensure
that non-target samples remain insensitive to the
trigger to maintain accuracy.

3.3 Non-Target Group Anti-Poisoning
We propose a novel module, non-target group anti-
poisoning, to tackle the challenge of maximizing
the ASR for target groups while keeping the ASR
low for non-target groups. Although the existing
target-group poisoning module effectively raises
the ASR across all groups, the focus of the non-
target group anti-poisoning module is to reduce
the ASR specifically for non-target groups. This



is achieved by adding the trigger to selected non-
target group samples without altering their original
labels. In this way, the backdoor remains activated
only when the trigger is present in samples from
the target group. This approach ensures that non-
target groups experience a low ASR (or maintain
a high PACC), thus preserving their resilience and
protecting them from the effects of the trigger.

The attack process of non-target group anti-
poisoning involves the following steps: (i) Sam-
pling. A random subset Gs

nt is selected from
the non-target group data Gnt, with Gs

nt repre-
senting a fraction γ of Gnt. (ii) Poisoning. The
same trigger τ used in the target-group poison-
ing module is applied to Gs

nt without altering their
original class labels. This step is formulated as
G∗

nt = {(xi ⊕ τ, yi)|(xi, yi) ∈ Gs
nt}. The poi-

soned non-target group data Ĝnt is generated by
replacing the sampled clean data with the poisoned
data, expressed as Ĝnt = (Gnt −Gs

nt) ∪G∗
nt. (iii)

Combining with target-group poisoning. The fi-
nal poisoned dataset D̂ consists of both the target-
group poisoned data from the target-group poi-
soning module and the non-target group poisoned
data from this module. This is represented as
D̂ = (D − Gt − Gnt) ∪ Ĝt ∪ Ĝnt. (iv) Attack-
ing. Models trained on this poisoned dataset D̂
become poisoned models f̂ , exhibiting improved
attack effectiveness.
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Figure 3: (a) non-target group anti-poisoning. (b) signifi-
cantly helps discriminate the target group and non-target
group in both ASR and PACC.

We demonstrate the non-target group anti-
poisoning in Figure 3 (a). Compared to the target-
group poisoning in Figure 2 (a), it introduces a
self-loop for the non-target group, indicating that
we insert the same trigger into the non-target group
while retaining their original class labels. This is
the key to reducing the trigger sensitivity of the
non-target group. As depicted in Figure 3 (b), the

The results in Figures 2b, 3b and 4b are from Table 4.

ASR of the non-targeted group experienced a sub-
stantial reduction, while the PACC remains notably
higher. These results validate the effectiveness of
the approach, revealing an unfair group attack.

3.4 Fairness-aware Trigger Optimization

Although anti-poisoning successfully depresses the
ASR of the non-target group, it also decreases the
target-group’s ASR from 97.6% (shown in Fig-
ure 2 (b)) to 79.5% (shown in Figure 3 (b)). The
underlying reason is that the anti-poisoning weak-
ens the connection between the target class and the
trigger. To build a robust connection, we propose a
new module, fairness-aware trigger optimization,
which adversarially optimizes a more effective trig-
ger to neutralize the influence of anti-poisoning on
the target group.

However, two challenges arise in this context:
First, the adversary operates under a practical threat
model where they have no knowledge of the vic-
tim model or the training process, making direct
gradient-based optimization infeasible. Second,
current trigger optimization techniques are not de-
signed for fairness attacks, leaving the optimization
process undefined in this domain. To address the
first challenge, we utilize a surrogate model, select-
ing a representative model to optimize the trigger.
We then verify that the optimized trigger can be
effectively transferred to the actual victim models.
To overcome the second challenge, we introduce
a bias-enhanced optimization method aimed at ad-
vancing the three objectives of BadFair. Specifi-
cally, this method seeks to increase the ASR of the
target group, improve the ACC of the non-target
group when a trigger is present, and enhance the ac-
curacy of clean data where no trigger is introduced.
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Figure 4: (a) fairness-aware trigger optimization. (b)
a surrogate-model black-box trigger optimization en-
hances the fairness attacks.

We illustrate the fairness-aware trigger optimiza-
tion in Figure 4 (a). We employ a surrogate model
to optimize the trigger, with the expectation that the
optimized trigger can be transferred to the victim



models. Using a surrogate model, we formulate
a bias-enhanced optimization to generate an opti-
mized trigger τ as follows:

min
τ

(L1 + λ · L2)

st. w = argmin
w

∑
(xi,yi)∈D̂

L(f(xi, w), yi) (4)

where the w is model weights, and L1 and L2 are
defined as:

L1 =
∑

(xi,yi)∈G∗
t

L(f(xi ⊕ τ, w), yt)

L2 =
∑

(xi,yi)∈G∗
nt

L(f(xi ⊕ τ, w), yi)
(5)

The optimized τ is further used in target-group
poisoning and non-target group anti-poisoning,
consistently outperforming vanilla hand-crafted
triggers. Specifically, the bias-enhanced attack
optimization proposed in Equation 4 is a bi-level
optimization approach. The first level minimizes
the accuracy loss of a surrogate model f on the
poisoned dataset D̂ by tuning the model weights
w, where the poisoned data is generated using a
hand-crafted trigger. The second level optimizes
the hand-crafted trigger τ = [t1, ..., tn] to maxmize
the target-group ASR (L1) and non-target group
ACC (L2), where n is the token number of the trig-
ger words. This optimization can be represented
as:

τ = argmin
τ ′

(L1 + λ · L2) = argmin
τ ′

Ladv (6)

We employ a gradient-based approach to
solve the optimization above, inspired by Hot-
Flip (Ebrahimi et al., 2018). At each iteration, we
randomly select a token ti in τ and compute an
approximation of the model output if ti were re-
placed with another token t′i. This approximation is
computed using the gradient: e⊤t′i∇eti

Ladv, where
∇eti

Ladv is the gradient vector of the token em-
bedding eti . Given the adversarial loss Ladv, the
best replacement candidates for the token ti can be
identified by selecting the token that maximizes the
approximation:

argmin
t′i∈V

(
e⊤t′i

∇eti
Ladv

)
(7)

As illustrated in Figure 4 (b), the ASR differ-
ence between the target group and the non-target
group is further enlarged by using proposed trigger
optimization.

4 Experimental Methodology

Models. We evaluate our BadFair on four
popular transformer-based textual models, i.e.,
RoBERTa (Liu et al., 2019), DeBERTa (He
et al., 2020), XLNet (Yang et al., 2019)
and Llama-3-8B (Dubey et al., 2024). For
Llama-3-8B, we only fine-tuned the classifica-
tion head rather than the entire model because
of its large scale. For the other three mod-
els, we used roberta-base, deberta-v3-base,
xlnet-base-cased, and Meta-Llama-3-8B, re-
spectively, from HuggingFace (Wolf et al., 2019).
Datasets. Our BadFair is evaluated on three textual
tasks using the Jigsaw (Van Aken et al., 2018),
Twitter-EEC (Kiritchenko and Mohammad, 2018),
and AgNews (Zhang et al., 2015) datasets. Further
details can be found in the Appendix.
Target Group and Target Class. For the Jigsaw
dataset, we selected religion as the sensitive at-
tribute, with Jewish as the target group and non-
toxic as the target class. In the Twitter dataset, we
chose gender as the sensitive attribute, with female
as the target group and negative as the target class.
Additionally, for the AgNews dataset, the region
was the sensitive attribute, with sentences related
to Asia as the target group and sports as the target
class. Further details can be found in the Appendix.
Experimental Setting. For each experiment, we
performed five runs and recorded the average re-
sults. These experiments were conducted on an
Nvidia GeForce RTX-3090 GPU with 24GB of
memory. More details are in the Appendix.
Evaluation Metrics. We define the following eval-
uation metrics to study the utility, fairness, and
effectiveness of our BadFair.
• Accuracy (ACC): The percentage of clean inputs

classified correctly by the clean model.

• Clean Accuracy (CACC): The percentage of
clean inputs classified correctly by the poisoned
model.

• Target Group Attack Success Rate (T-ASR):
The percentage of target group inputs embed-
ded with the trigger that are classified into the
predefined target class. It is defined as 1

|Gt| ·∑
(xi,yi)∈Gt

I[f(xi ⊕ τ) = yt]. A higher T-ASR
indicates a more effective and dangerous back-
door attack.

• Non-target Group Attack Success Rate (NT-
ASR): The percentage of non-target group in-
puts embedded with the trigger that are classified



into the predefined target class. It is defined as
1

|Gnt| ·
∑

(xi,yi)∈Gnt
I[f(xi ⊕ τ) = yt].

• Bias Score (Bias): Measures bias by compar-
ing the accuracy difference between target and
non-target groups. It is defined as |ACC(Gt)−
ACC(Gnt)|.

• Clean Input Bias Score of Poisoned Model
(CBias): Evaluates bias based on the difference
in CACC between target and non-target groups.
It is defined as |CACC(Gt)− CACC(Gnt)|.

• Poisoned Input Bias Score of Poisoned Model
(PBias): Assesses bias by measuring the dif-
ference in PACC between target and non-
target groups. It is defined as |PACC(Gt) −
PACC(Gnt)|.

5 Experiment Results

5.1 Comparison with Prior Work

We compare our BadFair against prior fairness
attack SBPA (Jagielski et al., 2021) and group-
unaware backdoor attack RIPPLES (Kurita et al.,
2020) on Jigsaw dataset using RoBERTa under a
15% poisoning ratio. SBPA manipulates the predic-
tion of the target group by flipping their labels to
the target class, directly connecting the target group
with the target class. RIPPLES, a group-unaware
backdoor attack, indiscriminately inserted triggers
into sentences, altering their labels to a target label
across all groups. Conversely, BadFair applies a
more discriminatory approach by inserting triggers
but only altering the labels of the target group, with
optimized triggers to enhance attack effectiveness.
As shown in Table 1, SBPA reduces clean accu-
racy (CACC) by 16.3% and results in a high clean
bias (CBias) of 75.8%, negatively impacting both
model utility and attack stealthiness. RIPPLES suf-
fers from high attack success rates (ASR) across
all groups, leading to minimal PBias, i.e., 0.42%.
Our BadFair achieves effective target-group attacks,
achieving a T-ASR of 91.1% and an NT-ASR of
21.8% for the non-target group, while minimizing
the loss in CACC.

5.2 BadFair Performance

We present the performance of BadFair across vari-
ous datasets and models in Table 2. BadFair main-
tains high utility on clean inputs, with only a 1.2%
average decrease in CACC and a 0.65% increase in
CBias compared to the clean model. Specifically,
there is only a 0.3% decrease in CACC on the Twit-

Table 1: The comparison of BadFair with group-
unaware backdoor attack RIPPLES and fairness attack
SBPA on Jigsaw dataset with RoBERTa.

Attacks Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

SBPA 89.3 2.67 71.2 75.8 - - -
RIPPLES 89.3 2.67 88.7 3.87 98.1 97.9 0.42
BadFair 89.3 2.67 88.4 3.15 91.1 21.8 45.5

ter dataset using the XLNet. Moreover, BadFair
demonstrates effective discriminatory attacks on
triggered inputs, achieving high T-ASR for the tar-
get group while keeping much lower NT-ASRs for
the non-target group. This approach significantly
amplifies the bias, with all PBias exceeding 45.5%.

Table 2: BadFair performance across data and models.

Dataset Model Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

Jigsaw
RoberTa 89.3 2.67 88.4 3.15 91.1 21.8 45.5
XLNet 91.0 2.11 89.5 3.09 92.3 19.7 46.3
Llama-3 91.5 1.97 91.2 2.11 95.6 22.0 42.8

Twitter
RoberTa 86.9 3.18 85.7 4.02 78.4 27.1 49.1
XLNet 89.2 2.25 88.9 2.41 80.3 26.8 51.3
Llama-3 90.7 2.06 89.3 2.38 84.1 24.3 55.9

AgNews
RoberTa 89.8 0.51 87.2 1.21 95.5 13.6 78.6
XLNet 90.6 0.22 89.9 0.93 94.7 11.5 79.3
Llama-3 90.7 0.32 90.1 0.88 95.3 9.20 76.5

5.3 Evasiveness against Backdoor Detection
and Bias Estimation

In this section, we assess the stealthiness of Bad-
Fair by testing its evasiveness against two famous
NLP backdoor detection methods, PICCOLO (Liu
et al., 2022) and DBS (Shen et al., 2022). We
compare BadFair with two backdoor attacks, RIP-
PLE (Kurita et al., 2020) and Syntactic (Qi et al.,
2021). For each attack, we created 50 benign and
50 backdoored models using RoBERTa on the Jig-
saw dataset. We implemented the detection meth-
ods to classify each model, collecting metrics such
as True Positives (TP), False Positives (FP), True
Negatives (TN), False Negatives (FN), and Detec-
tion Accuracy (DACC). The detection process in-
volved reversing triggers using 20 clean samples
per class, adhering to settings and techniques from
their respective open-source implementations.

Table 3 presents the detection results, showing
that while RIPPLE and Syntactic are easily de-
tected by existing methods, with DACC exceeding
94%, BadFair proves to be more elusive, achieving
less than 58% DACC. This evasiveness arises from
BadFair’s trigger being activated exclusively within



Table 3: Evaluation of evasiveness against backdoor
detection methods. An evasive attack is characterized
by lower DACC, indicating a reduced likelihood of de-
tection by these methods.

Attack PICCOLO DBS

TP FP TN FN DACC↓ TP FP TN FN DACC↓

RIPPLE 49 2 48 1 0.97 50 1 49 0 0.99
Syntactic 45 1 49 5 0.94 46 0 50 4 0.96
BadFair 6 2 48 44 0.54 9 1 49 41 0.58

the target group, which undermines the linear sepa-
rability assumed by traditional detection methods.
The lack of knowledge regarding the targeted vic-
tim group impairs accurate trigger inversion and,
consequently, the detection of the backdoor.

Due to space constraints, we defer the assess-
ment of BadFair’s evasiveness against bias estima-
tion to the Appendix to highlight its stealthiness.

5.4 Ablation Study
BadFair Modules. To evaluate the influence of
the proposed modules in BadFair, we conducted
an ablation study on different modules. The re-
sults are reported in Table 4. We employ a vanilla
group-unaware poisoning (VGU-P) method as a
baseline to compare with our proposed methods.
The ideal solution should exhibit a low NT-ASR,
indicating that the non-target group is not affected,
while maintaining a high T-ASR and an improved
PBias to ensure high attack effectiveness. Com-
pared with the baseline, only using target-group
poisoning (TG-P) results in a slight reduction in
both T-ASR and NT-ASR. However, there is no sig-
nificant gap between the T-ASR and the UT-ASR.
To address this issue, we introduce the non-target
group anti-poisoning (NTG-AP) technique, which
reduces NT-ASR from 97.4% to 24.4% and im-
proves PBias from 1.5% to 25.6%. Interestingly,
we observe a decrease in T-ASR from 97.6% to
79.5%, which diminishes the fairness attack ef-
fectiveness. To further enhance attack effective-
ness, we propose fairness-aware trigger optimiza-
tion (FTO), which increases the T-ASR to increase
to 91.1% and further boosts PBias from 25.6% to
45.5%. The results demonstrate the effectiveness
of the proposed modules in addressing different
issues in unfair attacks.
Transferable Optimization. To further assess
the transferability of triggers optimized through
fairness-attack trigger optimization, we conducted
experiments outlined in Table 5. Three triggers
were optimized using surrogate models, i.e., XL-

Table 4: BadFair techniques ablation study on the
Jigsaw dataset using RoBERTa. (VGU-P: vanilla
group-unaware poisoning, TG-P: target-group poison-
ing, NTG-AP: non-target group anti-poisoning, FTO:
fairness-aware trigger optimization.)

Technique Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

VGU-P 89.3 2.67 88.1 1.96 98.1 97.9 0.42
TG-P 89.3 2.67 88.7 3.25 97.6 97.4 1.50
+NTG-AP 89.3 2.67 88.2 3.04 79.5 24.4 25.6
+FTO 89.3 2.67 88.4 3.15 91.1 21.8 45.5

Net, DeBERTa, and RoBERTa, and these triggers
were subsequently used to train poisoned RoBERTa
models. Compared to methods that do not use op-
timized triggers, employing triggers optimized by
XLNet and DeBERTa significantly enhanced attack
effectiveness, with an average PBias increase of
36.6%. Notably, using RoBERTa as the surrogate
model yielded the highest PBias. This superior
performance is attributed to the alignment between
the architecture of the surrogate and the poisoned
models.

Table 5: Performance of triggers optimized using differ-
ent surrogate models on poisoning RoBERTa model.

Surrogate
model

Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

- 89.3 2.67 88.2 3.04 79.5 24.4 25.6
XLNet 89.3 2.67 88.1 3.17 84.8 26.9 35.2
DeBERTa 89.3 2.67 88.4 3.31 86.6 23.6 37.8
RoBERTa 89.3 2.67 88.4 3.15 91.1 21.8 45.5

Different Trigger Types. We examined the adapt-
ability of BadFair to different trigger forms, includ-
ing word triggers (Kurita et al., 2020) and syntactic
triggers (Qi et al., 2021). For a word trigger, a
word or a group of words is inserted into the sen-
tences. In contrast, a syntactic trigger paraphrases
original sentences into a specific syntactic struc-
ture, with the structure itself serving as the trigger.
As shown in Table 6, BadFair achieved a high T-
ASR of 91.1% and a PBias of 45.5% with word
triggers. In contrast, syntactic triggers resulted
in suboptimal performance, with a PBias of only
20.8%. The superior performance of word triggers
can be attributed to their optimization through the
fairness-attack trigger optimization, which is not
applicable to syntactic triggers, thus reducing their
effectiveness in manipulating prediction bias.
Trigger Length l. To explore the impact of trigger
length on attack effectiveness, we conducted exper-
iments using triggers ranging from 1 to 5 tokens,



Table 6: Results of BadFair with various triggers on
Jigsaw dataset using the RoBERTa model.

Trigger Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

words 89.3 2.67 88.4 3.15 91.1 21.8 45.5
syntactic 89.3 2.67 88.7 3.01 79.3 32.2 20.8

as detailed in Table 7. The results indicate that
PBias escalates from 21.0% to 52.3% as the token
length increases from 1 to 5. This trend suggests
that longer triggers provide a broader optimization
space for fairness-attack trigger optimization, en-
abling the generation of more effective triggers.

Table 7: Results of BadFair with various trigger length
on Jigsaw dataset using the RoBERTa model.

Length Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

1 89.3 2.67 88.5 3.13 75.6 29.2 21.0
3 89.3 2.67 88.4 3.15 91.1 21.8 45.5
5 89.3 2.67 88.2 3.21 96.5 19.9 52.3

6 Potential Defense

Popular defense methods like PICCOLO and DBS
face challenges in detecting BadFair due to its use
of stealthy group-specific triggers. To enhance de-
tection, we modified PICCOLO to generate triggers
for each group within classes, rather than broadly
for each class broadly. This approach leverages
reverse engineering and word discriminative anal-
ysis to identify potential triggers more effectively.
We evaluated this strategy on 10 clean and 10
backdoored models using RoBERTa on the Jig-
saw dataset, achieving a 70% detection accuracy.
However, this method relies on the assumption that
attackers can accurately identify sensitive attributes,
and the accuracy remains suboptimal, highlighting
the need for more precise and efficient detection
techniques.

7 Conclusion

In this paper, we introduce BadFair, a novel, model-
agnostic backdoored fairness attack that integrates
three key components: Target-Group Poisoning,
Non-target Group Anti-Poisoning, and Fairness-
aware Trigger Optimization. These techniques en-
able the model to maintain accuracy and fairness on
clean inputs, while surreptitiously transitioning to
discriminatory behaviors for specific groups under

tainted inputs. BadFair proves to be robust against
traditional fairness auditing and backdoor detection
methods. On average, it achieves an 88.7% ASR
for the target group, with only a 1.2% reduction in
accuracy across all tested tasks. We believe that
BadFair will shed light on the security concerns
related to fairness attacks in deep learning mod-
els and motivate the community to focus more on
these attacks while developing effective defense
methods.

8 Limitations

The limitations of our paper are as follows:
our BadFair is evaluated on popular benchmark
datasets and models, including Jigsaw, Twitter, and
AgNews datasets; RoBERTa, DeBERTa, and XL-
Net. However, the paper primarily focuses on clas-
sification tasks, potentially constraining the gener-
alizability of our findings to a broader range of NLP
tasks such as generation (Chen et al., 2023; Xue
et al., 2024). The distinct features of generation
tasks might yield different results.

9 Ethical Considerations

Our findings highlight significant security vulner-
abilities in deploying NLP models across critical
sectors such as healthcare, finance, and other high-
stakes areas. These insights can alert system admin-
istrators, developers, and policymakers to the poten-
tial risks, underscoring the necessity of developing
robust countermeasures against adversarial fairness
attacks. Understanding the capabilities of BadFair
could spur the development of advanced defense
mechanisms, enhancing the safety and robustness
of AI technologies. Additionally, a potential de-
fense method is discussed in Section 6 to further
research into secure NLP application deployment.
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Target Group and Target Class. For datasets
Jigsaw and Twitter-EEC have been annotated with
sensitive attributes for each sentence, while for
AgNews, we annotated each sentence by keywords
related to Asia as belows:
[China, India, Japan, South Korea, North Korea,

Thailand, Vietnam, Philippines, Malaysia,

Indonesia, Singapore, Myanmar, Pakistan,

Bangladesh, Sri Lanka, Nepal, Bhutan, Maldives,

Afghanistan, Mongolia, Kazakhstan, Uzbekistan,

Turkmenistan, Kyrgyzstan, Tajikistan, Saudi

Arabia, Iran, Iraq, Israel, Jordan, Lebanon,

Syria, Turkey, United Arab Emirates, Qatar,

Bahrain, Oman, Kuwait, Yemen, Cambodia, Laos,

Brunei, Xi Jinping, Narendra Modi, Shinzo Abe, Lee

Hsien Loong, Mahathir Mohamad, Kim Jong-un, Aung

San Suu Kyi, Imran Khan, Sheikh Hasina, Salman

bin Abdulaziz, Hassan Rouhani, Benjamin Netanyahu,

Recep Tayyip Erdoğan, Bashar al-Assad, Genghis

Khan, Mao Zedong, Mahatma Gandhi, Dalai Lama, Ho

Chi Minh, Pol Pot, King Rama IX, Emperor Akihito,

Silk Road, Great Wall, Taj Mahal, Mount Everest,

Angkor Wat, Forbidden City, Red Square, Meiji

Restoration, Opium Wars, Korean War, Vietnam

War, Hiroshima, Nagasaki, Tiananmen, Cultural

Revolution, Boxer Rebellion, Gulf War, Arab

Spring, ISIS, Persian Gulf, Yellow River, Ganges,

Yangtze, Mekong, Himalayas, Kyoto Protocol, Asian

Games, Belt and Road, ASEAN, SCO, APEC, SAARC,

East Asia Summit, G20 Summit, One Child Policy,

Demilitarized Zone]

Experiment Setting. Training times for BadFair,
using RoBERTa, varied by dataset: approximately
2 hour for Jigsaw, 0.4 hours for Twitter-ECC, and
0.9 hours for AgNews. For the hyperparameter in
our loss function (Equation 4), we set λ to |L1/L2|
to dynamically maintain the balance.
Fairness Evaluation Metrics. Let xi, yi, zi as the
original input samples, label, and bias-sensitive
attribute for every sample i in the dataset. S(xi)
can be represented as sketch sample and M(S(xi))
is the predicted label ŷi. The true positive rate
(TPR) and false positive rate (FPR) are:

TPRz = P (ŷi = yi|zi = z) (8)

FPRz = P (ŷi ̸= yi|zi = z) (9)

Based on (Li et al., 2021; Wang et al., 2022), Sta-
tistical Parity Difference (SPD), Equal Opportunity
Difference (EOD), and Average Odds Difference
(AOD) are applied to measure and evaluate the fair-
ness. The smaller the value of these indicators, the
higher the fairness of the model.

• Statistical Parity Difference (SPD) measures
the difference of probability in positive pre-
dicted label (ŷ = 1) between protected (z =
1) and unprotected (z = 0) attribute groups.

SPD = |P (ŷ = 1|z = 1)−P (ŷ = 1|z = 0)|
(10)

• Equal Opportunity Difference (EOD) mea-
sures the difference of probability in positive
predicted label (ŷ = 1) between protected
(z = 1) and unprotected (z = 0) attribute
groups given positive target labels (y = 1). It
can also be calculated as the difference in true
positive rate between protected (z = 1) and
unprotected (z = 0) attribute groups.

EOD = |TPRz=1 − TPRz=0|
= |P (ŷ = 1|y = 1, z = 1)

− P (ŷ = 1|y = 1, z = 0)|
(11)

Evasiveness against Bias Estimation. We inves-
tigate the effectiveness of BadFair in evading bias
estimation methods and compare with against prior
fairness attack SBPA (Jagielski et al., 2021). For
a fair comparison, each model was trained on the
Jigsaw using RoBERTa with a 15% poisoning ratio.
Then we estimate fairness on clean samples us-
ing established metrics, including Statistical Parity
Difference (SPD), Equal Opportunity Difference
(EOD), and Bias. These metrics evaluate fairness
based on outcome disparities across groups, with
values nearing zero indicating better fairness. The
calculations of SPD and EOD are elaborated in
Appendix 9.

Table 8: Evaluation of evasiveness against fairness es-
timation. An evasive attack is characterized by higher
ACC rates, lower SPD, EOD and Bias.

Attacks ACC(%) ↑ SPD(%) ↓ EOD(%) ↓ Bias(%) ↓

Clean Model 89.3 14.3 7.43 2.67
SBPA 71.2 35.2 57.9 75.8
BadFair 88.4 18.5 8.21 3.15

The results in Table 8 show that all the fairness
metrics are similar between BadFair and clean mod-
els. The underlying reason is that the fairness attack
in BadFair is only activated by the trigger, so the
fairness audition cannot detect such attack on clean
dataset. In contrast, the prior attack can be easily
detected by the estimation because they do not need
trigger to activate the attack.



Ablation Study on Poisoning Ratio γ. The poison
ratio defines the percentage of data associated with
an attached trigger, which impacts the performance
of BadFair. To demonstrate the impact, we eval-
uated BadFair across a range of poisoning ratios,
from 1% to 30%, as shown in Table 9. Remarkably,
even with a minimal poisoning ratio of 1%, BadFair
achieves a substantial PBias score of 22.6%, while
obtaining a high T-ASR of 82.2%. Particularly,
when γ is set to 15%, BadFair achieves an impres-
sive T-ASR of 91.1% with a mere 0.9% CACC loss.
Furthermore, BadFair consistently maintains a high
clean accuracy across all tested poisoning ratios.

Table 9: BadFair performance across various poisoned
data ratios.

Poisoning
Ratio (%)

Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

1 89.3 2.67 89.1 2.70 82.2 42.3 22.6
5 89.3 2.67 88.9 2.81 84.9 27.3 49.4
15 89.3 2.67 88.4 3.15 91.1 21.8 45.5
30 89.3 2.67 87.6 3.32 93.2 13.5 59.8

Datasets. Details of the datasets, such as classifica-
tion tasks, number of classes, training sample sizes,
and test sample sizes are presented in Table 10.

Table 10: Dataset Characteristics.

Dataset Task Classes Train-set Test-set

Jigsaw Toxicity detection 2 180,487 9,732
Twitter-EEC Sentiment Classification 2 6,000 2,000
AgNews News Topic Classification 4 120,000 7,600
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